Hybrid Post-Quantum Additively Homomorphic
Encryption & Private Information Retrieval

Jelle Vos [0000—0002—3979—9740]

mail@jelle-vos.nl

Abstract. We introduce the first generic constructions of hybrid addi-
tively homomorphic encryption, motivated by its application to hybrid
private information retrieval (PIR). Our schemes can be used to combine
classical and post-quantum homomorphic encryption to remain secure
unless both underlying assumptions fail. Motivated by the generic com-
biners for key encapsulation mechanisms, digital signatures, and password-
authenticated key exchanges, we present parallel and sequential compo-
sitions for combining two symmetric additively homomorphic encryption
schemes. We provide a generic formal definition of additively homomor-
phic encryption in which a ciphertext is split into a part containing only
randomness and a part that encodes the message. We use this new def-
inition to generalize SimplePIR and FrodoPIR beyond (R)LWE-based
cryptosystems, allowing them to achieve hybrid security.

Keywords: Additively homomorphic encryption - Hybrid encryption -
Private information retrieval - Post-quantum cryptography.

This is an initial version of the paper, which does not yet include results
and is missing security proofs. Many formal definitions are also still missing. We
expect to share a full version in the future.

1 Introduction

In the shift to deploying post-quantum cryptography, organizations are opting
for hybrids: cryptographic primitives that are proven to be secure under either
a classical hardness assumption or one that is conjectured to resist quantum at-
tacks. This means that the primitive does not break if the post-quantum hardness
assumption turns out not to be strong enough, or if the classical assumption is
broken by a quantum computer.

Some hybrid constructions already exist for primitives such as key encapsula-
tion mechanisms (KEMs) [5] and digital signatures [4]. On a high-level, any two
KEMs can be combined into a hybrid KEM by using both in parallel, deriving
the final key from a combination of both generated keys. Signatures, similarly,
can be composed in parallel to construct a hybrid signature; the verifier must
simply ensure that both signatures are valid. Some more complex combiners for
KEMs or digital signatures achieve slightly stronger security properties.

2 Vos

Whereas these simpler primitives such as KEMs and signatures permit sim-
ple generic constructions, more complex hybrid primitives can be non-trivial to
achieve. For example, recently, generic constructions were proposed for password-
authenticated key exchanges (PAKEs) [9,10]. Parallel composition is in those
cases only possible when the constituent PAKEs satisfy very strong notions of
security. In practice, hybrid PAKEs may use a form of sequential composition
that requires weaker security notions.

To the best of our knowledge, there is no literature that considers generic
constructions of hybrid homomorphic encryption. A reason for this may be that
the plaintext algebra of classical and post-quantum homomorphic encryption
schemes is typically wildly different. In this work, we propose the first such con-
structions, specifically aimed at realizing additively (or linearly) homomorphic
encryption. We focus on the symmetric setting, but we note that the main ideas
behind these constructions can also be applied to the asymmetric (public-key)
setting. Similar to hybrid PAKEs, our constructions include both parallel and
sequential compositions.

A strong motivation for the design of these hybrid homomorphic encryption
schemes is that they can be used to instantiate private information retrieval
(PIR) protocols. Such protocols allow a user to private query a public server
without having to download the entire database, and they are already being
used in practice [2]. Unfortunately, we are only aware of protocols that are ei-
ther secure under classical assumptions or they are conjectured to resist quan-
tum attacks under more recent hardness assumptions, which have received less
scrutiny. Our hybrid additively homomorphic encryption schemes imply hybrid
private information retrieval, which only fails when both hardness assumptions
fail.

2 Redefining symmetric AHE

A symmmetric additively homomorphic encryption (AHE) scheme is a cryp-
tosystem with a single key for encryption and decryption and whose ciphertexts
can be manipulated in a way that allows performing additions on the under-
lying plaintexts. We shall use the term encryption scheme and cryptosystem
interchangeably. In this section, we provide a slightly different definition of sym-
metric AHE than the conventional one, in which we separate a ciphertext into
a part that only contributes randomness, and a part that carries information
about the message. We do so because, later in this work, we compose multiple
additively homomorphic cryptosystems into hybrid cryptosystems. This compo-
sition is made more efficient by specifying the parts of the ciphertexts that are
nothing more than public randomness.

2.1 The cryptosystem
Symmetric AHE schemes are parameterized as follows:

— K: The secret key space

Hybrid Post-Quantum AHE & PIR 3

— M: The message (plaintext) space
— R: The public randomness space
— C: The ciphertext space

We require that M is endowed with a commutative group structure, which can
be viewed as a Z-module. The AHE scheme also defines the following interfaces:

— KeyGen(1%) — sk € K: Generates a secret key with security parameter .

Encrypt(sk,0, m) — ¢ € C: Encrypts a message m € M using secret key sk

and random seed 0 € {0,1}*.

— Expand(f) — r € R: Deterministically maps random seed 6 € {0,1}* to R.

— Decrypt(sk,r’,¢/) — m' € M: Decrypts the randomness-ciphertext pair
(r', ') € R x C using the secret key sk € K to produce the plaintext.

Such a cryptosystem is typically defined to be secure if an attacker cannot feasi-
bly extract information about the underlying plaintexts, even when performing
chosen-plaintext attacks. This is typically formalized by the symmetric IND-
CPA security game [7]. Since we separate r and ¢, our interface to the security
game is slightly different. One may define the conventional encryption-decryption
interface as follows, where 6 € {0, 1}*:

Encrypt®(sk, m) = (Expand(#), Encrypt(sk, 8, m)) ,
Decrypt®(sk, (r',¢')) = Decrypt(sk,r’,) .

We also require that the cryptosystem remains IND-CPA secure when the same
0 is used to encrypt multiple times but under different keys sk.

2.2 The homomorphic property

It is customary for additively homomorphic cryptosystems to define different
functions for performing homomorphic additions between a ciphertext & plain-
text and two ciphertexts, as well as performing homomorphic multiplication with
a scalar (e.g. using repeated addition). However, with the goal of achieving pri-
vate information retrieval in mind, we summarize all these operations under a
single function that computes a linear operation on multiple ciphertexts. We
refer to this operation as a homomorphic dot product and define it below:

— Dot(R,C,S) — (r',c') € R x C: Computes a randomness-ciphertext pair
that encrypts the linear combination S € Z" of the plaintexts represented
by the inputs pairs R € R"™ and C € C".

For simplicity, this dot product does not allow one to add a plaintext to a
ciphertext without encrypting it, as we do not require this functionality for
private information retrieval.

It turns out that all the AHE schemes we are aware of, can define the ho-
momorphic dot product in a way that separates randomness R and ciphertexts
C. This property allows us to achieve significant performance improvements in

4 Vos

private information retrieval protocols. We say that an AHE scheme is separable
if it defines the homomorphic dot product as:

Dot(R, C, S) = (Dotg (R, S), Dote(C, S)) .

Some AHE schemes are noisy, and homomorphic operations typically increase
this noise. If the noise exceeds a certain threshold, decrypting the ciphertext may
result in an incorrect plaintext. As such, we define a relaxed notion of correctness,
which states that the probability with which the ciphertext-randomness pair
computed by a circuit C decrypts correctly with overwhelming probability. This
circuit C may be composed of several homomorphic dot products.

2.3 Additional properties

The construction we define later sometimes require specific additional properties
to hold for an AHE scheme. We briefly define an additional property that some
schemes satisfy: We say that a cryptosystem is sampleable if, given sk, an attacker
cannot differentiate between ¢ €z C and Encrypt(sk, 6, m) where § €g {0,1}*,
r < Expand(#), and m < Decrypt(sk,r,c). This is therefore a strictly stronger
property than the uniformity of ciphertexts.

We also define a property that does not relate to security, but concerns the
homomorphic operation. We say that an additively homomorphic cryptosystem
is algebraic if the homomorphic dot product is defined as follows:

Dotr(R,S)=R- S,
Dote(C,S)=C-S.
In other words, the homomorphic dot product is simply defined as a regular dot

product (e.g. using repeated addition) on R and C. An algebraic AHE scheme
is by definition always separable.

3 Additively homomorphic secret sharing

Our parallel compositions require a specific form of secret sharing.

3.1 Generic definition

Our parallel composition is parameterized by an additively homomorphic secret
sharing scheme (AHSS), which we define below. For simplicity, we only consider
the case where secrets are split into two shares. The secret sharing schemes is
parameterized by the following variables:

— P: The space of secrets that may be shared
— &7: The space of the first secret share
— &y: The space of the second secret share

Hybrid Post-Quantum AHE & PIR 5

Notice that unlike in typical secret sharing schemes, the two shares may now
be elements of different algebras. The secret sharing scheme also defines the
following interfaces:

— (s1,82) < Split(p): Splits secret plaintext p € P into two shares s; € S; and
S9 € So.

— (s1,82) < Combine(sy, s2,): Splits secret plaintext p € P into two shares
s1 € S1 and s9 € So.

Given (s1,s2) + Split(p) and (s}, s5) < Split(p’), we must have that:
Combine(sy + 87,82+ s5) =p+p (1)

This defines the additively homomorphic property of the secret sharing scheme.
The secret sharing scheme must be information-theoretically secure in the sense
that knowledge of only one of the shares does not allow an adversary to gain a
non-negligible amount of information about the secret.

3.2 Sampleable AHSS

If §1 and S are isomorphic, then we can simply use regular additive secret
sharing. The resulting scheme is also sampleable in the sense that you can sample
s1 €r S1 and still come up with a valid and secure ss € Sy that, in isolation,
information-theoretically hides any specific secret P. For this purpose, we define
the following function:

— 89 + SplitSampled(p, s1): Splits secret p € P into previously sampled s; € S;
and sy € Ss.

3.3 Small-value AHSS

If S; and S, are not isomorphic, they may not even have the same cardinality,
we can still come up with a valid secret sharing scheme. Say that P = Zp,
S1 =2Zsg,, and Sy = Zg,, with P < 57 and P <« S3. We can split a secret using
regular additive secret sharing and embed the shares into S; and Ss. As long as
we do not perform too many homomorphic operations on the secret shares, the
embedded shares do not wrap around the modulus, so they remain correct. We
can combine the shares by reducing them modulo P before adding the embedded
shares together.

4 Constructions for hybrid symmetric AHE

We now discuss four different compositions to achieve hybrid AHE.

6 Vos

4.1 Parallel composition: One-&-Two

Given two AHE schemes AHE; and AHE,, we define the composition AHE ¢ as
follows. It is parameterized as follows:

— AHSS: The additively homomorphic secret sharing scheme.
— AHE;: The first AHE scheme, with no additional properties.
— AHEs: The second AHE scheme, with no additional properties.

For an AHSS scheme to be suitable, we require that the following constraints
are met:

AHSS.S; = AHE;. M
AHSS.S; = AHE;. M

We can then define the rest of our parallel composition:

AHE;g9.K = AHE; . x AHE.KC

AHE;g2.M = AHSS. P

AHE g2 R = AHE;. R x AHE;. R

AHE;¢5.C = AHE;.C x AHE>.C

AHE; ¢5.KeyGen(17) = (AHE;.KeyGen(1™), AHE;.KeyGen(17))
AHE; g2.Expand(6) = (AHE;.Expand(#), AHE;.Expand(9))

AHE 4.Dotr ((Ry, Rz), 8) = (AHE;.Dotg (R1, S), AHE.Dotg (Rs, S))
AHE ¢5.Dote ((C1, Cs), S) = (AHE;.Dote (C1, §), AHE;.Dote (Cs, S))

We define AHE; go.Encrypt((sky, sk2),0,m) as:

— Split the message: (s1, s2) < AHSS.Split(m).
— Output (AHE;.Encrypt(ski, 0, s1), AHE2.Encrypt(sks, 6, s2)).

and we define AHEg2.Decrypt((ski, ska), (r1,72), (c1,c2)) as:

— Decrypt the first share: s; < AHE;.Decrypt(ski,m1,c1).
— Decrypt the second share: sy < AHEs.Decrypt(ska, 12, c2).
— Output AHSS.Combine(sy, s2).

4.2 Parallel composition with sampling: Sampled-One-&-Two

The above construction does not require the AHE schemes to satisfy special
properties, but it turns out we can improve its efficiency if we are able to assume
that one of the schemes is sampleable. We assume it is AHE; that is sampleable
without loss of generality. The idea is to sample the first ciphertext from a seed,
then decrypt it and interpret it as a secret share, and finally to base the second
share on this share so it reconstructs to the message we wish to encrypt when
combined. We describe what adjustments to make below.

Hybrid Post-Quantum AHE & PIR 7

For an AHSS scheme to be suitable, we require the additional constraint that
it is sampleable as well. We can then redefine some parts of this composition:

AHE;142.R = AHE;.R x AHE>. R x AHE;.C
AHE;142.C = AHE,.C
AHE,142.Expand(f) = (AHE;.Expand(§), AHE;.Expand(6), H(6))
AHE 1 &2.Dotr ((R1, R2,C1),S) = (AHE;.Dotg (Ry, S), AHE;.Dotg (R2, S), AHE; .Dot¢ (Ch, S))
AHE1g2.Dotc(Ca, S) = AHE. Dot (Cs, S)

Here, H is a pseudo-random function that maps 6 € {0,1}* to AHE;.C.
We define AHE 1 ¢.2.Encrypt((sk1, sk2),6,m) as:

— Sample the first ciphertext: ¢; < H(6).

— Determine the first share: s; « AHE;.Decrypt(sk;, AHE;.Expand(6),cy).
Split the message: so «— AHSS.SplitSampled(m, s1).

Output AHE,.Encrypt(sks, 6, s2).

and we define AHE 1 ¢o.Decrypt((sky, ska), (r1,72,¢1),c2) as:

— Decrypt the first share: s; «+ AHE;.Decrypt(ski,r1,c1).
— Decrypt the second share: sy +— AHE;.Decrypt(sks, 72, c2).
— Output AHSS.Combine(sy, s2).

4.3 Sequential composition: One-encrypts-Two

In the parallel compositions described above, the AHE schemes encrypt secret
shares. We now consider sequential compositions, in which one AHE scheme
encrypts the ciphertext of another AHE scheme. A benefit of this approach is
that you do not have to store both ciphertexts.

In this first sequential construction, there is an inner and outer AHE scheme.
We require that the inner AHE scheme is algebraic, which ensures that homo-
morphic addition on the outer scheme also implies homomorphic addition on
the inner one. One problem with having one scheme encrypt the ciphertexts
produced by another is that many combinations of AHE schemes are incom-
patible: the plaintext space of one does not match the ciphertext space of the
other. We circumvent this problem by parameterizing our construction with a
mapping that provides a translation between these two spaces. To ensure that
homomorphic additions on the outer scheme still cause homomorphic additions
in the inner one, the mapping must be a group isomorphism.

Given two AHE schemes, AHE; and AHEs, the latter being algebraic, we for-
mally define the composition AHE ., as follows. It has the following parameters:

— AHE;: The first AHE scheme, with no additional properties.
— AHEs: The second AHE scheme, which must be algebraic.
— Iso: A group isomorphism from AHE,.C to AHE;. M.

8 Vos

The rest of the scheme is defined as follows:

AHE; 2. K = AHE;.K x AHE;.K

AHE; 2. M = AHE,. M

AHE 2. R = AHE;. R x AHE2. R

AHE;.2.C = AHE;.C

AHE;.2.KeyGen(1”%) = (AHE;.KeyGen (1), AHE2.KeyGen(1%))
AHE1.2.Expand(6) = (AHE;.Expand(6), AHE:.Expand(6))
AHE.2.Encrypt((ski, ska), 6, m) = AHE; .Encrypt(sky, 0, Iso(AHEs.Encrypt(skz, 6, m)))
AHE; .2.Decrypt((ski, ska), (7’1,?"2),6) AHE;.Decrypt(sks, 1o, Iso ' (AHE; .Decrypt(ski1, 1, ¢)))

AHE;.2.Dotr ((R1, R2),S) = (AHE;.Dotg (R, S), AHE;.Dotg (R2, S))
AHE;.2.Dotc ((C1, Cs), S) = AHE; .Dotc(C4, S)

4.4 Sequential composition with sampling: One-masks-Two

In our parallel compositions, we showed that sampling allowed us to omit one of
the AHE scheme’s ciphertexts from the composed ciphertext space. It turns out
that a similar trick works for our sequential composition. The idea is to sample
a random ciphertext from the first AHE scheme and to use its plaintext to
additively mask the ciphertext from the second scheme. We can then include first
ciphertext in the randomness space so that the ciphertext space only contains
the second ciphertext.

Like above, we can improve the compatibility of composed schemes by intro-
ducing a mapping. In this case, that mapping suffices to be one-way. After all,
we only need to undo the mask. As such, the mapping suffices to be a group
homomorphism.

Given two AHE schemes, AHE; and AHEs, the latter being algebraic, we for-
mally define the composition AHE .o as follows. It has the following parameters:

— AHE;: The first AHE scheme, which must be sampleable.
— AHEs: The second AHE scheme, which must be algebraic.
— Hom: A group homomorphism from AHE;.M to AHE>.C.

The rest of the scheme is defined as follows:

AHE 5.k = AHE,.KC x AHE,.K
AHE 2. M = AHE;. M
AHE;.2. R = AHE;.'R x AHE;. R x AHE;.C
AHE;..C = AHE,.C
AHE; 2. KeyGen(17) = (AHE;.KeyGen(1%), AHE,.KeyGen(1%))
AHE;.2.Expand(6) = (AHE;.Expand(6), AHE;.Expand(0), H(0))
AHE 2.Dot ((R1, Ra, C1), S) = (AHE;.Dotg (R1, S), AHEs.Dot (R, S), AHE;.Dotc (C1, S))
AHE.5.Dotc(Co, S) = AHE,.Dotc(Co, S)

Hybrid Post-Quantum AHE & PIR 9

Here, H is a pseudo-random function that maps @ € {0,1}* to AHE;.C.
We define AHE;g2.Encrypt((sky, ska),0,m) as:

— Sample the first ciphertext: ¢; < H(0).

— Determine the mask: p < AHE;.Decrypt(ski, AHE;.Expand(#),c1).
— Encrypt the message: co < AHEy.Encrypt(ska, 6, s2).

— Output the masked ciphertext co + p.

and we define AHE 1 ¢9.Decrypt((skq, ska), (r1,72,¢1),c2) as:

— Decrypt the mask: u < AHE;.Decrypt(ski,r1,¢1).
— Decrypt the masked ciphertext: ¢ < AHEy.Decrypt(ska, r2, c2).
— Output ¢ — p.

5 Efficient instantiations of hybrid AHE

We discuss how to practically parameterize our hybrid AHE constructions.

5.1 Practical realizations of AHE

In Table 1 we list the two classical and two post-quantum AHE schemes we
consider in this work. Using the four generic constructions described in Section 4,
we can construct at least 16 different hybrid AHE schemes.

Table 1. The practical constructions for AHE that we consider for realizing hybrid
AHE. The classical schemes rely on the decisional Diffie-Hellman or the decisional
composite residuosity assumptions, whereas the post-quantum schemes rely on (a ring
variant of) the learning with errors assumption. All schemes are seperable. The post-
quantum schemes are not sampleable. Paillier is not algebraic because its homomorphic
addition is realized using regular multiplication.

AHE scheme Security Assumption Sep. Sampl. Alg.
G-ElGamal Classical DDH)) ()
Paillier assica DCR e o O
Regev Post-quantum LWE ® O []
BFV SAuAntii - RIwWE e O o

5.2 Parameter selection

Parameterizing ElGamal We choose to parameterize G-ElGamal using a
prime-order elliptic curve (encoding). Any such curve would work, but we chose
Curve25519 with the Ristretto encoding as it permits a mapping between bit-
strings and curve points. This allows us to encode the values of a PIR database.

10 Vos

It is conjectured that this group is secure under the DDH assumption. ElGa-
mal’s homomorphic operations remain correct for any circuit. A downside of
this cryptosystem is that decryption requires computing an intractable discrete
logarithm. Fortunately, if we limit the ciphertexts we want to decrypt to those
whose plaintext is in a small range, we can create a lookup table, which allows
us to decrypt efficiently after a one-time setup.

Parameterizing Paillier For Paillier, we use the key length recommendations
provided by NIST for RSA [3], which states that the RSA modulus must have
length at least 3072 bits to achieve 128 bits of security. Note that the modulus of
a Paillier ciphertext is the square of the RSA modulus, so the actual size of such
a ciphertext will be at least 6144 bits. Like ElGamal, Paillier remains correct for
any circuit.

It is straightforward to map bitstrings to and from Paillier plaintexts, as the
plaintexts are integers under the RSA modulus. This means that we can encode
and decode 3072-bit bitstrings by interpreting them as integers.

Parameterizing the (R)LWE-based cryptosystems For the Regev and
the BFV cryptosystem, we propose to follow the homomorphic encryption stan-
dard [1], which contains tables describing the maximal permitted ciphertext
modulus bitlength that remains secure under quantum attacks for a fixed noise
magnitude. If a large plaintext modulus is required, we must choose a large ci-
phertext modulus and therefore a large dimension. If a large ciphertext modulus
is required, we can simply scale up a smaller sample. Whether a certain param-
eter set is valid depends on the aspects of the PIR protocol we want to run: if
the database is large, the ciphertext must have a higher noise thrshold, and if
the database’s values are large, we require a larger plaintext modulus.

5.3 Parameterizing the constructions

While the constructions proposed in Section 4 have few constraints, they do
require that the plaintext and ciphertext spaces of the composed AHE schemes
are somehow compatible. The classical schemes involve plaintext and ciphertext
spaces with large orders (thousands of bits) and few factors. These factors are
either very small (e.g. the cofactor of an elliptic curve group) or very large (e.g.
the prime factors of an RSA modulus). On the other hand, learning with errors-
based post-quantum AHE schemes prefer ciphertext moduli that decompose
into multiple word-sized primes, and the plaintext spaces are often significantly
smaller than the classical ones. Below, we will discuss how to parameterize the
constructions when instantiated with the AHE schemes from Table 1, and we
analyze how many plaintext bits they can encrypt for each ciphertext bit.

The key idea to unify these two different types of AHE schemes is to select
the (R)LWE ciphertext moduli so they match the plaintext or ciphertext space
of ElGamal or Paillier. For ElGamal, this is the group of integers modulo a
specific 252-bit prime modulus. For Paillier, the modulus is 3072 bits in size. To

Hybrid Post-Quantum AHE & PIR 11

make sure the resultant ciphertexts are not impractically large, we can set the
actual ciphertext modulus to be smaller, and scale it up simply by multiplying
it using a predetermined factor. Of course, this also scales up the noise, so the
ciphertext cannot be arbitrary small. This scaling must be done in the AHSS
scheme, the Iso mapping, or the Hom mapping.

6 Hybrid private information retrieval

In this section, we provide a generic construction for private information retrieval
from separable symmetric AHE schemes. By instantiating the AHE scheme with
one that provides hybrid security, the PIR protocol achieves the same. Our con-
struction is a straightforward generalization of SimplePIR [8] and FrodoPIR |[6].
The resulting PIR protocol involves only one server and requires no client-specific
storage. It does require each client to download a public hint.

The PIR protocol is parameterized by a separable AHE scheme AHEs,. In-
stead of as rows that exploit the fact that an RLWE-based ciphertext can encode
multiple elements, we just encode larger values from which the client can even-
tually select their queried sub-value. We also do not constrain the size of the
database. We use the same syntax as SimplePIR.

Setup(db) — (hints, hint.):

— Sample 0 € {0,1}*.
— Compute r < Expand(9).
— Return (L, (6, AHEsp.Dotg (1, db))).

Query(i) — (state, query):

— Compute one-hot encoding u < OneHot(i, V).

— Create a fresh key sk < AHEge,.KeyGen(17).

— Create encryption(s): ¢ <— AHEqe,.Encrypt(sk, 0, u).
— Return (sk, c¢).

Answer(db, hintg, query) — answer:

— Return AHE,.,.Dot¢(query, db)).
Recover(state, hint,., answer) - VALUE:

— Return AHE,,.Decrypt(state, hint., answer)).

We will provide results in the full version.

References

1. Albrecht, M., Chase, M., Chen, H., Ding, J., Goldwasser, S., Gor-
bunov, S., Halevi, S., Hoffstein, J., Laine, K., Lauter, K., Lokam, S.,
Micciancio, D., Moody, D., Morrison, T., Sahai, A., Vaikuntanathan,
V.: Homomorphic encryption standard. Technical Report v1.1, Homomor-
phicEncryption.org (Nov 21 2018), https://homomorphicencryption.org/wp-
content /uploads/2018 /11 /HomomorphicEncryptionStandardv1.1.pdf

12

10.

Vos

. Apple: Combining machine learning and homomorphic encryption in the apple

ecosystem. https://machinelearning.apple.com/research /homomorphic-encryption
(October 24 2024), accessed: 2025-08-29

Barker, E.B.: Recommendation for key management: Part 1 — gen-
eral. Tech. Rep. NIST Special Publication (SP) 800-57 Part 1,
Rev. 5, National Institute of Standards and Technology, Gaithers-
burg, MD (May 2020). https://doi.org/10.6028 /NIST.SP.800-57pt1r5,
https://doi.org/10.6028 /NIST.SP.800-57pt1r5

Bindel, N., Hale, B.: A note on hybrid signature schemes. Cryptology ePrint
Archive, Paper 2023/423 (2023), https://eprint.iacr.org/2023/423

Connolly, D., Hévelmanns, K., Hiilsing, A., Kousidis, S., Meijers, M.: Starfight-
ers — on the general applicability of x-wing. Cryptology ePrint Archive, Paper
2025/1397 (2025), https://eprint.iacr.org/2025/1397

Davidson, A., Pestana, G., Celi, S.: FrodoPIR: Simple, scalable, single-server pri-
vate information retrieval. Cryptology ePrint Archive, Paper 2022/981 (2022),
https://eprint.iacr.org/2022/981

Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and Sys-
tem Sciences 28(2), 270-299 (Apr 1984)

Henzinger, A., Hong, M.M., Corrigan-Gibbs, H., Meiklejohn, S., Vaikuntanathan,
V.: One server for the price of two: Simple and fast single-server pri-
vate information retrieval. Cryptology ePrint Archive, Paper 2022/949 (2022),
https://eprint.iacr.org/2022/949

Hesse, J., Rosenberg, M.: PAKE combiners and efficient post-quantum
instantiations. Cryptology ePrint Archive, Paper 2024/1621 (2024),
https://eprint.iacr.org/2024/1621

Lyu, Y., Liu, S.: Hybrid password authentication key exchange in the
UC framework. Cryptology ePrint Archive, Paper 2024/1630 (2024),
https://eprint.iacr.org/2024/1630

